Суббота, 20.04.2024, 16:49
ООО "МехЭлектроЭкология"
Вы вошли как Гость | Группа "Гости"Приветствую Вас Гость | RSS
Меню сайта
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
Яндекс цитирования.
ИСТОРИЯ УЛЬТРАФИОЛЕТА

История открытия

Понятие об ультрафиолетовых лучах впервые встречается у индийского философа 13-го века Shri Madhvacharya в его труде Anuvyakhyana. Атмосфера описанной им местности Bhootakasha содержала фиолетовые лучи, которые невозможно увидеть обычным глазом.
Вскоре после того, как было обнаружено инфракрасное излучение , немецкий физик Иоганн Вильгельм Риттер начал поиски излучения и в противоположном конце спектра, с длиной волны короче, чем у фиолетового цвета. В1801году он обнаружил, что хлорид серебра, разлагающийся под действием света, быстрее разлагается под действием невидимого излучения за пределами фиолетовой области спектра. Тогда, многие ученые, включая Риттера, пришли к соглашению, что свет состоит из трех отдельных компонентов: окислительного или теплового (инфракрасного) компонента, осветительного компонента (видимого света), и восстановительного (ультрафиолетового) компонента. В то время ультрафиолетовое излучение называли также «актиническим излучением».

 

Виды ультрафиолетового излучения
НаименованиеАббревиатураДлина волны в нанометрахКоличество энергии на фотон
БлижнийNUV400 нм — 300 нм3.10 — 4.13 эВ
Средний MUV300 нм — 200 нм4.13 — 6.20 эВ
Дальний FUV 200 нм — 122 нм 6.20 — 10.2 эВ
ЭкстремальныйEUV, XUV121 нм — 10 нм10.2 — 124 эВ
ВакуумныйVUV 200 нм — 10 нм6.20 — 124 эВ
Ультрафиолет А, длинноволновой диапазон, Чёрный светUVA400 нм — 315 нм 3.10 — 3.94 эВ
Ультрафиолет B (средний диапазон) UVB315 нм — 280 нм3.94 — 4.43 эВ
Ультрафиолет С, коротковолновой, гермицидный диапазонUVC 280 нм — 100 нм 4.43 — 12.4 эВ
Практически весь UVC и приблизительно 90 % UVB поглощаются озоном, а также водным паром, кислородом и углекислым газом при прохождении солнечного света через земную атмосферу. Излучение из диапазона UVA достаточно слабо поглощается атмосферой. Поэтому радиация, достигающая поверхности Земли, в значительной степени содержит ближний ультрафиолет UVA, и, в небольшой доле — UVB.


Искусственные источники
Благодаря созданию и совершенствованию искусственных источников УФ излучения, шедшими параллельно с развитием электрических источников видимого света, сегодня специалистам, работающим с УФ излучением в медицине, профилактических, санитарных и гигиенических учреждениях, сельском хозяйстве и т. д., предоставляются существенно большие возможности, чем при использовании естественного УФ излучения. Разработкой и производством УФ ламп для установок фотобиологического действия (УФБД) в настоящее время занимаются как ряд крупнейших электроламповых фирм (Philips, Osram, LightTech, Radium, Sylvania и др.). В России известны производители УФ ламп для УФБД: ОАО «Лисма-ВНИИИС» (Саранск), НПО «ЛИТ» (Москва), ОАО СКБ «Ксенон» (Зеленоград), ООО «ВНИСИ» (Москва). Номенклатура УФ ламп для УФБД весьма широка и разнообразна: так, например, у ведущего в мире производителя фирмы Philips она насчитывает более 80 типов.

Дезинфекция питьевой воды
Метод дезинфекции с использованием УФ-излучения [1] доказал свою эффективность при дезактивации переносимых водой болезнетворных микроорганизмов и вирусов без ухудшения вкуса и запаха воды и без внесения в воду нежелательных побочных продуктов. Такой метод дезинфекции завоёвывает популярность в качестве альтернативы или дополнения к традиционным средствам дезинфекции, таким как хлор, из-за своей безопасности, экономичности и эффективности.

Принцип действия УФ-излучения
УФ-дезинфекция выполняется при облучении находящихся в воде микроорганизмов УФ-излучением определённой интенсивности (достаточная длина волны для полного уничтожения микроорганизмов равна 260,5 нм) в течение определённого периода времени. В результате такого облучения микроорганизмы «микробиологически» погибают, так как они теряют способность воспроизводства. УФ-излучение в диапазоне длин волн около 254 нм хорошо проникает сквозь воду и стенку клетки переносимого водой микроорганизма и поглощается ДНК микроорганизмов, вызывая нарушение её структуры. В результате прекращается процесс воспроизводства микроорганизмов.
На сегодняшний день использование УФ-излучения — один из самых эффективных и безопасных способов обеззараживания воды в случаях, когда объем обрабатываемой воды не велик.



Стерилизация воздуха и твёрдых поверхностей
Ультрафиолетовые лампы используются для стерилизации (обеззараживания) воды, воздуха и различных поверхностей во всех сферах жизнедеятельности человека. В наиболее распространённых лампах низкого давления 86 % излучения приходится на длину волны 254 нм, что хорошо согласуется с пиком кривой бактерицидной эффективности (то есть эффективности поглощения ультрафиолета молекулами ДНК). Этот пик находится в районе длины волны излучения равной 254 нм, которое оказывает наибольшее влияние на ДНК, однако кварцевое стекло, ранее используемое для изготовления колбы лампы, также как и другие природные вещества (например, вода) задерживают проникновение УФ. Степень дезинфекции зависит от дозы, которая равна произведению интенсивности на время. Излучение «ненужных» для дезинфекции длин волн приводит к тому, что для облучения объекта необходимой дозой УФ лампе требуется большее количество времени, а следовательно снижается КПД устройства. Вот почему в настоящее время на замену морально устаревших кварцевых бактерицидных ламп, которые имели сравнительно низкий КПД по причине низкой пропускной способности, а также из-за того, что излучали весь спектр УФ при необходимой длине волны равной исключительно 254 нм, приходят УФ лампы нового поколения, в которых с внутренней стороны стекла нанесено покрытие, разработанное с применением нано-технологий,[источник?] позволяющее увеличить пропускную способность стекла только для УФ волн с длиной равной 254 нм. Это позволяет в разы уменьшить энергопотребление УФ лампами и увеличить их эффективность.[источник?]
Бактерицидное УФ излучение на этих длинах волн вызывает димеризацию тимина в молекулах ДНК. Накопление таких изменений в ДНК микроорганизмов приводит к замедлению темпов их размножения и вымиранию.

Ультрафиолетовая обработка воды, воздуха и поверхности не обладает пролонгированным эффектом. Достоинство данной особенности заключается в том, что исключается вредное воздействие на человека и животных. В случае обработки сточных вод УФ флора водоемов не страдает от сбросов, как, например, при сбросе вод, обработанных хлором, продолжающим уничтожать жизнь ещё долго после использования на очистных сооружениях.

Форма входа
Поиск
Календарь
«  Апрель 2024  »
ПнВтСрЧтПтСбВс
1234567
891011121314
15161718192021
22232425262728
2930
Архив записей
Copyright MyCorp © 2024